Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(6): 7531-7542, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38291590

RESUMEN

Perovskite nanocrystals (PNs) have received much attention as luminescence materials in the field of electrochemiluminescence (ECL). However, as one key factor for determining the optoelectronic properties of the surface state of PNs, the surface passivation layer of PNs has enormous difficulty in simultaneously meeting the requirements of high ECL efficiency, conductivity, and stability. Herein, an effective surface modification strategy with cyanuric acid (CA) is used to solve such issue. As confirmed, the CA molecules are chemically anchored onto the surface of PNs via the Lewis interaction between π electrons of the triazine ring and the empty orbit of Pb2+. Benefiting from the above interaction, the electrochemical impedance of PNs is decreased greatly without the loss of light-emitting efficiency. Moreover, the stability of PNs under O2 exposure is improved by almost sixfold. These improvements are confirmed to be beneficial for enhancing the ECL behaviors of PNs under electrochemical operation. Upon cathode ECL driving conditions in aqueous media, the ECL intensity and efficiency of PNs are increased to 200 and 170%, respectively. This work provides a new modification strategy to holistically improve the ECL performance of PNs, which is instructive to exploring robust perovskite nanomaterials for electrochemical applications.

2.
ACS Appl Mater Interfaces ; 15(13): 16723-16731, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36971542

RESUMEN

Cathode electrochemiluminescence (ECL) of C3N4 material has suffered from weak and unstable ECL emission for a long time, which greatly limits its practical application. Herein, a novel approach was developed to improve the ECL performance by regulating the crystallinity of the C3N4 nanoflower for the first time. The high-crystalline C3N4 nanoflower achieved a pretty strong ECL signal as well as excellent long-term stability compared to low-crystalline C3N4 when K2S2O8 was used as a co-reactant. Through the investigation, it is found that the enhanced ECL signal is attributed to the simultaneous inhibition of K2S2O8 catalytic reduction and enhancement of C3N4 reduction in the high-crystalline C3N4 nanoflower, which can provide more opportunities for SO4• - to react with electro-reduced C3N4• -, and a new "activity passivation ECL mechanism" was proposed, while the improvement of the stability is mainly ascribed to the long-range ordered atomic arrangements caused by structure stability in the high-crystalline C3N4 nanoflower. As a benefit from the excellent ECL emission and stability of high-crystalline C3N4, the C3N4 nanoflower/K2S2O8 system was employed as a Cu2+ detection sensing platform, which exhibited high sensitivity, excellent stability, and good selectivity with a wide linear range from 6 nM to 10 µM and a low detection limit of 1.8 nM.

3.
Molecules ; 27(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364282

RESUMEN

Very recently, there is a great research interest in electrochemiluminescence (ECL) featuring thermally activated delayed fluorescence (TADF) properties, i.e., TADF-ECL. It is appealing since the earlier reports in this topic well-confirmed that this strategy has a great potential in achieving all-exciton-harvesting ECL efficiency under electrochemical excitation, which is a breakthrough in the topic of organic ECL. However, organic phase electrochemistry and ECL studies surrounding TADF-ECL are still extremely rare. Especially, the ECL spectra of previous reported TADF emitters are still very different from their PL spectra. In this work, we systematically measure and discuss the liquid electrochemistry and ECL behavior of two typical TADF molecules in organic medium. Most importantly, we verify for the first time that the ECL spectra of them (coreactant ECL mode) are identical to their PL spectra counterparts, which confirms the effectiveness of TADF photophysical properties in the coreactant ECL mode in practice.

4.
Molecules ; 27(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296454

RESUMEN

Developing excellent strategies to optimize the electrochemiluminescence (ECL) performance of C3N4 materials remains a challenge due to the electrode passivation, causing weak and unstable light emission. A strategy of controlling the calcination atmosphere was proposed to improve the ECL performance of C3N4 nanotubes. Interestingly, we found that calcination atmosphere played a key role in specific surface area, pore-size and crystallinity of C3N4 nanotubes. The C3N4 nanotubes prepared in the Air atmosphere (C3N4 NT-Air) possess a larger specific surface area, smaller pore-size and better crystallinity, which is crucial to improve ECL properties. Therefore, more C3N4•- excitons could be produced on C3N4 NT-Air, reacting with the SO4•- during the electrochemical reaction, which can greatly increase the ECL signal. Furthermore, when C3N4 nanotube/K2S2O8 system is proposed as a sensing platform, it offers a high sensitivity, and good selectivity for the detection of Cu2+, with a wide linear range of 0.25 nM~1000 nM and a low detection limit of 0.08 nM.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanotubos , Técnicas Electroquímicas , Grafito/química , Mediciones Luminiscentes , Porosidad , Atmósfera , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...